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ABSTRACT. This paper compares three versions of Ranked Choice Voting (RCV) that differ by 

their elimination methods: Least First-Place votes, Most Last-Place votes, and Lowest Borda 

Count. Results are compared to two established measures of majority support—the Condorcet 

winner and Condorcet loser criteria—and two other criteria that are important to social choice 

scholars—Independence of Eliminated Alternatives and Reversal Symmetry. R simulations 

under an Impartial Culture assumption are run for various combinations of candidates and 

voters. Results show that the Lowest Borda Count outperforms the other two elimination 

procedures on the Condorcet winner, and Independence of Eliminated Alternatives criteria, 

while the Most Last-Place method tends to perform at least as well as Borda elimination on 

reversal symmetry. All three methods perform relatively equally on the Condorcet loser 

criterion. These findings underscore the need for policymakers and electoral designers to 

consider the nuances of RCV before adopting the system. 
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Introduction 

Ranked Choice Voting (RCV)1 has gained significant momentum in recent years, both in 

practice and advocacy, emerging as a popular alternative to traditional voting systems. 

According to the Ranked Choice Voting Resource Center, RCV is now used in major U.S. cities 

such as San Francisco and has even been adopted statewide in Alaska for electing Senators and 

allocating Presidential electoral votes. Dougherty and Edward (2001) note that internationally, 

RCV is used to elect members of the Australian House of Representatives, the national 

parliament of Papua New Guinea, some mayors in New Zealand, and the President of Ireland. As 

RCV spreads, interest in its mechanics and fairness has also grown.  

 In RCV elections, voters rank candidates, and first place votes are tallied based on these 

rankings. If no candidate earns a majority of first-place votes, the “least desirable” candidate(s) is 

eliminated using an elimination procedure. Once a candidate(s) is eliminated, a new search for a 

majority winner commences among the subset of remaining candidates. The process continues 

until a majority winner is identified with the candidate with a majority of first place rankings  

winning the election. 

 This paper compares three different ways of identifying the “least preferred” 

candidate(s). These elimination rules are Least First Place (LFP), Most Last Place (MLP), and 

Lowest Borda Count (LBC). The most wildly used method is LFP.  It is used  in Alaska and San 

Francisco and it is supported by rank choice advocacy groups like FairVote.org. Proposed in the 

19th century, MLP, also known as Coombs method. has been used to select government officials 

(Grofman et al. 2004) and interestingly, is like the method for eliminating candidates on the 

 
1 RCV is often used interchangeably with the term Instant Runoff Voting (IRV). Although there are differences that 
emerge when multiple candidates are being selected, RCV and IRV are identical when they are designed to pick a 
single winner.  
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reality television show Survivor. Like MLP, LBC has been used sparingly. Nanson (1882) 

mentions its historical use by the Trinity College Dialectic Society and a variant was also used in 

Marquette, WI in the 1920s (Gruber). Despite its limited usage, LBC has become an important 

focal point in United States Presidential elections due to the recent work of eminent economist 

Amartya Sen and Nobel laureate Eric Maskin (2023) who have argued that it should replace 

plurality rule and the Electoral College.  

 Interestingly, Maskin and Sen (2017b) initially advocated for LFP only to back LBC later 

(2017a). It is that change in their stance that motivated my research as Maskin’s rationale was 

limited to intuitive arguments and a deeper search into the differences in elimination rules 

seemed appropriate. That deeper search includes comparing the three different elimination 

procedures in terms of four traditional voting criteria - Condorcet Winner, Condorcet Loser, 

Independence of Eliminated Alternatives (IEA), and Reversal Symmetry. 

 Maskin argues that RCV is a viable alternative because it focuses on finding a majority 

winner, a desirable property in a democracy. For this reason, I evaluate it using the Condorcet 

winner and loser criteria because, as Nurmi (1987) argues, these criteria “align closely with 

democratic principles and serve as benchmarks for evaluating the rationality and fairness of 

voting methods.” I include Reversal Symmetry and IEA because they are common measures of 

democratic fairness advocated by social choice scholars. Specifically, Saari (1995) argues for the 

importance of Reversal Symmetry because an election that would elect the same candidate if 

preferences were completely inverted violates basic common sense. He argues it also suggests 

the voting method is, “sensitive to the structure of rankings in a distorted way, not truly 

reflecting voter intent; a sign that the method is fundamentally flawed or manipulative.” IEA 

violations can be important indication of the spoiler effect which advocates often claim RCV is 
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designed to avoid (McCune and Wilson (2023). An important example of an election “spoiler” is 

provided by Jenkins and Morris (2006) who argue that Breckenridge’s late entry into the 

Presidential election of 1860 led to Abraham Lincoln defeating Stephen A. Douglas, forever 

changing American history. 

 The treatment of ties in RCV elections is critical.  Contrary to other work that generally 

assumes elimination ties are broken at random. I do not break ties. Instead, I remove all 

candidates that tie from the RCV rankings. At times, this can lead to the removal of all remaining 

candidates which means the election does not produce a winner. Interestingly, under this “non-tie 

breaking rule”, I show that it is possible that even if there is a winner, it may be a Condorcet 

loser with LFP and MLP elimination, something not possible when ties are randomly broken. 

But I prove that a Condorcet loser can never win with LBC elimination even with unbroken ties, 

a finding that supports LBC. 

 The paper is organized as follows. First, I review the literature, pointing out how my 

research and results fit with work that spans more than a century. Next, I review the assumptions 

made in the paper, the RCV voting rules considered, and the criteria by which results are judged. 

After providing details on the simulation process, I present my results, including a discussion of 

the propensities of each elimination rule to produce no winner results, as well as the frequency 

with which each rule violates the four criteria. Conclusions are then offered as are possibilities 

for future research. The paper concludes with an appendix that provides the probability of 

violating the criteria when the no winner results are removed. 
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Literature Review 

Ranked Choice Voting (RCV), also known as Instant Runoff Voting (IRV), has been a central 

topic in social choice theory and democratic stability. This review synthesizes key academic 

contributions to the analysis of ranked voting systems, beginning with classical foundations and 

proceeding to contemporary computational methods. It situates my own research within this 

literature, contributing new insights into ranked voting systems, particularly regarding 

elimination and tie breaking rules. 

 The foundation of ranked voting theory can be traced to Condorcet (1785), who 

introduced the concept of a Condorcet winner—a candidate who would defeat every other 

candidate in head-to-head matchups. Condorcet criticized voting mechanisms, including ranked 

systems, for failing to consistently select this candidate. He also introduced the related concept of 

the Condorcet loser—the candidate who would lose to every other in pairwise comparisons. 

 A precursor to using a Borda count elimination rule was first proposed by Nanson (1907). 

Known as Nanson’s rule, all candidates with not more than the average number of Borda votes 

are eliminated, and the process continues until only one candidate remains. An important caveat 

is that if all the uneliminated candidates have the same total count then one of them is elected 

according to a pre-determined method for breaking ties and is declared the winner rather than 

eliminating all at once and having no winner. Also note that this method differs from typical 

RCV elections, which eliminate the candidate with the fewest first-place votes at each stage. 

Fishburn (1977) considered a variant of Nanson’s method that is more directly aligned with the 

rule examined in this paper where just the candidates with the lowest Borda count are eliminated, 

unless all are tied in which case a winner is randomly selected as in Nanson’s rule.  
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 The idea of a tiebreaker being needed during the elimination process is central to RCV 

outcomes but has been an afterthought in the analysis. Felsenthal and Nurmi (2019) admit 

existing studies do not include any routine to break ties but mention that in practice ties can be 

broken in several ways—randomly, based on lexicographic rules using last names, non-

anonymously (e.g., the chair breaks ties on a committee), or non-neutrally (e.g. the incumbent 

candidate is given the advantage). 

 The limited analysis leads me to investigate the role of tiebreaking rules. I consider an 

alternative way of handling ties where all tying candidates are eliminated, even if doing so 

results in no one winning the election. I show that in such a case, a Condorcet loser can actually 

win an RCV election with LFP or MLP elimination rules. This possibility arises because all other 

candidates might be eliminated in the penultimate elimination round, leaving the Condorcet loser 

to win unopposed. I prove that this is not true with LBC because a Condorcet loser can never 

have a higher Borda count than that of all the other candidates if those candidates are tied. 

 Maskin and Foley (2002) further explore the implementability of ranked voting systems, 

showing that RCV, when using the least first-place rule, can fail to be Pareto efficient. Later, 

Maskin and Sen (2014) expanded Condorcet’s critiques by arguing that RCV violates the 

Independence of Eliminated Alternatives (IEA) criterion. Although their argument is informal, 

my simulations confirm their intuition: all three elimination rules in RCV violate IEA, and I 

estimate a non-trivial likelihood of such violations under each. 

 Tideman (2006) and Benoit (2007) explore RCV’s tendency to overlook pairwise 

victories, raising concerns about non-monotonicity—where a candidate may be harmed by 

receiving additional support. Foley and Maskin (2022) revisited these ideas in light of Alaska's 

2022 RCV election, suggesting that changing the elimination rule from Least First Place to 
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Lowest Borda Count could help ensure a Condorcet winner is not eliminated. My simulations 

support their claim. 

 Examination of criteria violation has been performed theoretically by Lepelley (1993) 

and Gehrlein (2002) for example and computationally using Monte Carlo simulations by 

Lepelley et al. (2000) and Merrill (1984). More recent computational analyses, such as 

Dougherty and Edward (2012) examine the ability of unanimity and majority rule to produce 

Pareto superior and Pareto optimal alternatives in a two-dimensional spatial voting model. 

Alternatively, Dougherty and Heckelman (2020) use simulations to calculate the likelihood that 

various preference aggregation rules violate Arrow’s (1950) conditions. Most closely related to 

my simulation is Dougherty and Edward (2001) who examine several voting procedures 

including IRV on a single dimension. Their version of IRV uses the common LFP elimination 

method as a base of comparison to non-RCV type formats. My simulations extend this work to 

an unrestricted domain and different RCV elimination procedures but do not consider other 

methods examined by Dougherty and Edward such as plurality, majority rule with a runoff, and 

Borda Count.  

 In summary, the literature underscores both the strengths and weaknesses of RCV. RCV 

can mitigate the spoiler effect and promote majority-backed winners, but it also struggles with 

criteria like Condorcet consistency, monotonicity, and IEA. My research adds to this body of 

work by using computational methods to evaluate three RCV elimination rules—LFP, MLP, and 

LBC—against the Condorcet winner and loser, IEA, and reversal symmetry criteria. The results 

offer new insights into how elimination rules affect the likelihood of violating core principles in 

settings ranging from small committees to national elections. 
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Assumptions 

Throughout this paper the term voter is used specifically to mean a citizen who is eligible to vote 

and who turns out to vote. The term candidate means an individual or option that is on an 

election ballot as a choice for a voter. In my simulations, there are 𝐴𝐴 (= 3, 5, or 9) candidates 

and 𝑁𝑁 (= 3, 99, 9999) voters in an election. By examining a broad mix of candidates and voters, 

I can provide insight into RCV’s performance in small committee settings all the way to 

presidential elections that are the main concern of Maskin and Sen (2017a, 2017b). Note that the 

number of candidates and voters is odd, this lessens the possibility of a tie when looking for a 

majority winner without loss of generality. The number of candidates is limited to nine in that 

single winner elections rarely have more candidates than that. The number of voters is limited to 

9,999 because any increases in 𝑁𝑁 lengthens run time of the simulations without changing the 

results. 

 Each candidate draws their preference for candidates under the Impartial Culture (IC) 

condition, a concept used in social choice theory and voting behavior analysis to model different 

assumptions about how voter preferences are distributed. Under IC, every possible strict ranking 

of the candidates is equally likely, voter preferences are independent of each other, and the 

population of voter preferences is uniformly distributed over the space of all possible rankings. 

The full profile of drawn voter preferences is referred to as the preference profile in an election. 

The analysis assumes that all voters rank all candidates sincerely and that there is no strategic 

voting which implies that a profile is an accurate representation of the votes that are cast in an 

election.  
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Voting Rules 

The RCV process described in the introduction hinges on the elimination procedure used when 

there is not an immediate majority winner. The following three elimination procedures are 

considered.  

Elimination Rule 1. Least First Place (LFP): The candidate with the least number of first place 

votes is eliminated. LFP is the standard elimination rule used in practice, including Alaskan 

Senate and Presidential races.   

Elimination Rule 2. Most Last Place (MLP):The candidate with the most last place votes is 

eliminated. MLP has been used sparingly in the real-world and has usually been confined to 

relatively small settings such as committee decision making votes (Grofman et al. 2004).  

Elimination Rule 3. Lowest Borda Count (LBC): The candidate with the lowest Borda count is 

eliminated. To calculate a Borda Count, each ballot with 𝐴𝐴 candidates is examined and the 

candidate with the highest ranking on a ballot receives 𝐴𝐴 − 1 points which reflects that they are 

preferred to that number of other candidates by that voter. Similarly, the second ranked candidate 

receives 𝐴𝐴 –  2 points, and so on until the lowest ranked candidate receives zero points because 

they are not ranked ahead of any other candidates. The points earned by a candidate are then 

summed across all ballots. Whichever candidate(s) has the lowest total sum is eliminated in that 

round. 

 

Voting Criteria 

As stated above, four criteria—Condorcet Winner, Condorcet Loser, Independence of Eliminated 

Alternatives, and Reversal Symmetry—will be used to compare the three RCV elimination rules.  

The four criteria are: 
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Criterion 1. Condorcet Winner criterion. If a Condorcet Winner exists, it is the candidate who 

would beat every other candidate in head-to-head matchups using simple majority rule. A voting 

rule violates the Condorcet Winner criterion when it fails to elect the Condorcet winner, if there 

is one. No judgement is made regarding this criterion if there is not a Condorcet Winner. 

Criterion 2. Condorcet Loser criterion. If a Condorcet Loser exists, it is the candidate who 

would lose to every other candidate in head-to-head matchups using simple majority rule. A 

voting rule violates the Condorcet Loser criterion when it elects the Condorcet Loser, if there is 

one. No judgement is made regarding this criterion if there is not a Condorcet Loser. 

Criterion 3. Independence of Eliminated Alternatives (IEA). The IEA criterion is examined by 

checking whether the election result is changed by removing a non-winning candidate from the 

ballot.2 To test this, a winner is identified based on the initial preference profile and then non-

winning candidates are removed from the preference profile one at a time and winners are 

identified in each case. If the winner changes from the original result in any of those cases, IEA 

is violated. If there is no initial winner, then IEA is violated if removing a candidate produces a 

winner. It should be noted that this is a restricted form of IEA where comparisons are made by 

removing a single losing candidate and not all subsets of losing candidates.  

Criterion 4. Reversal Symmetry. Reversal Symmetry takes the original preference profile and 

inverts it so that every voter’s ranking is reversed. If the winner under the original profile 

remains the winner after preference inversion, then Reversal Symmetry is violated.  

 

 

 

 
2 It is important to note that IEA is not about the elimination of candidates in the elimination step of RCV. 
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Simulations 

Simulations were run to compare the three elimination rules. Each trial is run under the Impartial 

Culture (IC) which means that any individual voter's preference is generated at random from the 

set of all possible preference orders and is independent of all other voters’ preferences. To get a 

feel for the complexity of the analysis note that an election with 𝐴𝐴 = 3 candidates and 𝑁𝑁 = 3 

voters has 𝐴𝐴! = 6 possible preference orders and 63 = 216 equally likely preference profiles. 

This complexity necessitates simulations because of the mathematical difficulty in theoretically 

calculating the probability of violating criteria in all but the simplest environments. For example, 

the violation probabilities for the three candidate, three voter case are derived below theoretically 

but highlight the mathematical impossibility of deriving similar results for combinations of more 

candidate and/or more voters. Still, the Law of Large Numbers suggests that simulations with 

adequately many trials will provide good approximations of these unobtainable theoretical 

probabilities. To that end, 10,000 trials are run using R for the nine different combinations of 

𝐴𝐴 = 3, 5, 9 candidates and 𝑁𝑁 = 3, 99, 9999 voters.  

 R code is written to do the following for each of the  𝑇𝑇 = 10,000 trials: 

1) Randomly draws a preference profile over 𝐴𝐴 candidates for each of 𝑁𝑁 voters. 

2) Searches for a Condorcet Winner and Loser in that preference profile. Record the finding 

including winner/loser identity. 

3) Runs the RCV procedure on the preference profile for the three elimination rules 

separately and records the winner’s identity or denotes no winner in such a case. 

4) Removes each losing candidate one at a time. For each elimination, the ranked-choice 

voting procedures are repeated on the modified set of candidates.  The script then examines if the 
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winner matches the original winner and notes that it is not a violation. If not, it is recorded as a 

violation of IEA.  

5) Re-runs the RCV procedure with preferences reversed and find/record the winner/no 

winner for the three elimination rules.  If the winner is the same, the procedure is counted as 

violating the reversal symmetry criterion.  

6) Use the recorded results to check for violations of each criterion and keep a count thereof. 

7) Removes all no winner cases and check the filtered results for violations of the four 

criteria and keep a count thereof. 

Results 

This section presents and discusses the simulation results. I begin by examining each elimination 

method’s propensity to generate a no winner outcome. 
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Table 1: Instances of No Winner Due to Tie 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 2,229 4,770 6,951 
    
Most Last Place 533 176 302 
    
Lowest Borda Count 533 790 959 
    
𝑁𝑁 = 99     
    
Least First Place 93 126 142 
    
Most Last Place 94 131 128 
    
Lowest Borda Count 33 51 95 
    
𝑁𝑁 = 9,999     
    
Least First Place 1 1 3 
    
Most Last Place 0 1 1 
    
Lowest Borda Count 1 0 1 
    

Notes: Figures represent the number of trials (out of 10,000) where the elimination rule did not 
result in a winner. This happens in LFP when there is no majority winner in an RCV round and 
all remaining candidates receive an equal number of first place votes. It happens in MLP when 
there is no majority winner in an RCV round and all remaining candidates receive the same 
number of last place votes. It happens in LBC when there is no majority winner in an RCV round 
and all remaining candidates have the same Borda counts. It is important to note that the mere 
presence of a tie does not result in a no winner situation. It only does so if ALL remaining 
candidates are tied. 
 
 With only three voters, MLP weakly produces the least no winner results. The 

intermediate case of 99 voters shows that no winner results become increasing likely as the 

number of candidates increases although all rules produce a winner in at least 98.5% with the 

LBC rule producing the least number of no winner outcomes. When there are 9,999 voters the 

elimination methods become virtually identical with all rules generating no winner outcomes, but 
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all provide near zero chance of producing a no winner result. Fixing 𝑁𝑁 at 3 or 99, as candidates 

are added, both LFP and LBC experience increases in no winner results. MLP provides the most 

interesting result as it displays a non-monotonicity in violations for MLP when 𝑁𝑁 = 3.  

 Perhaps the most interesting result in Table 1 is that the Least First Place elimination rule 

produces far more no winner results compared to the other elimination rules when the number of 

voters is small. This is related to ties in eliminations. Although all elimination rules result in ties 

during the process, it is only when a tie occurs between all remaining candidates during 

elimination that a no winner result occurs. Under IC, it seems that a tie for first place should be 

as likely as a tie for last place – and it is. However, there is still a difference in no winner 

outcomes because all elimination rules care about ties at the top because of the majority 

requirement for a winner. However, MLP and LBC care about other rankings for elimination 

while LFP only cares about ties at the top. The following examples expand on this idea for 𝐴𝐴 =

𝑁𝑁 = 3.  

 In this case, MLP and LBC only result in no winner when each candidate has one first, 

one second, and one third place ranking like in the following preference profile. 

Preference Profile Example 1 (𝐴𝐴 = 3,𝑁𝑁 = 3) 
Voter 1 Voter 2 Voter 3 

A B C 
B C A 
C A B 

 
Here, there is no majority winner, and all three rules immediately eliminate all three candidates. 

This is the only way that MLP and LBC can result in such a tie when 𝐴𝐴 = 𝑁𝑁 = 3. But LFP can 

result in a tie in more situations when MLP and LBC do not as can be seen in the following 

example. 
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Preference Profile Example 2 (𝐴𝐴 = 3,𝑁𝑁 = 3) 
Voter 1 Voter 2 Voter 3 

A B C 
B A A 
C C B 

 

 Here, there is still no majority winner and LFP still eliminates all three candidates 

immediately. However, MLP and LBC only eliminate candidate C, leaving candidates A and B 

in a second round where candidate A obtains a majority and wins. This type of case is what adds 

to the no winner total of LFP (2,229 of the 10,000) whereas the MLP and LBC no winner totals 

are much lower (533). 

 From the Impartial Culture (IC) perspective, the preference profile in Example 2 is just as 

likely as the preference profile in Example 2R, where the preferences are exactly reversed. Since 

Example 2 has a three-way tie at the top and Example 2R has a three-way tie at the bottom, one 

might expect both to have no winner results. But this is not the case, and it is at the heart of why 

the LFP no winner total (2,229) is so much higher than the others (533).  

Preference Profile Example 2R (𝐴𝐴 = 3,𝑁𝑁 = 3) 
 

Voter 1 Voter 2 Voter 3 
C C B 
B A A 
A B C 

 

 First, if Example 1 is reversed, none of the three elimination procedures produce a winner 

because there is not a majority winner and because of the three-way tie for first and for last, 

every candidate is eliminated by each procedure. The election ends with no winner. However, 

the same is not true if Example 2 is reversed as in Example 2R.  

 Here there is a three-way tie for last place, but it does not affect the outcome since there 

is an immediate majority winner, and the elimination stage is never reached. Therefore, despite 
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the equal likelihood of Examples 2 and 2R under IC, the no winner result is not equally likely 

because MLP needs both a tie among all three candidates at the bottom and no clear winner at 

the top. If at least two voters support the same candidate, MLP picks a winner even if there is a 

tie at the bottom. Hence, the only case in which MLP produces a tie for 𝑁𝑁 = 3, 𝐴𝐴 = 3 without a 

winner is the case in which there is a three-way tie at the top and a three-way tie at the bottom 

whereas LFP only requires a three-way tie at the top for a no winner result. 

 In fact, in the case of 𝐴𝐴 = 𝑁𝑁 = 3, the theoretical probability of a no winner situation 

happening can be calculated for all three rules using the Fundamental Counting Principle. In all 

situations, the denominator of the ratio is the total number of possible preference profiles 

amongst the 𝑁𝑁 = 3 voters. Since there are 𝐴𝐴 = 3 candidates, there are six (3!)  possible 

orderings from which one is selected for each voter. This means that there are 63 possible 

preference profiles that might be chosen in each iteration of the simulation. 

 Since ties only occur in MLP and LBC when each candidate has exactly one vote at each 

ranking, the numerator in the ratio is the same for MLP and LBC. That numerator is 

(6)(2)(1) = 12. This is because once one of the six orderings is chosen for the first voter, there 

are only two orderings that can be chosen for the second voter that do not give any candidates 

multiple rankings at a given position. Once the ordering is chosen for the second voter, there is 

only one ordering possible for the third voter that maintains the completely balanced ranking in 

Example 1. 

 The numerator for LFP will be larger than the numerator for  MLP and LBC because it 

will contain all the preference profiles in the MLP and LBC numerators plus those as in Example 

2. The numerator in LFP is (6)(4)(2) = 48, four times more than in MLP and LBC. Thus, the 
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Fundamental Counting Principle gives the probability of a no winner outcome in MLP and LBC 

as (6)(2)
63

= 0.055 and (6)(4)(2)
63

= 0.222 in LFP. 

 As can be seen in Table 1, the trial probabilities match the theoretical probabilities well; 

2229 ≈ 4(533) with the slight difference being attributable to statistical error in the simulations. 

Table 2: Violations of the Condorcet Winner Criterion 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
 𝑁𝑁 = 3    
    
Least First Place 0.179 0.382 0.564 
    
Most Last Place 0.000 0.000 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW 9,467 8,461 6,998 
    
𝑁𝑁 = 99     
    
Least First Place 0.051 0.123 0.221 
    
Most Last Place 0.048 0.121 0.203 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW 9,107 7,428 5,489 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.035 0.103 0.186 
    
Most Last Place 0.035 0.100 0.199 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW 9,163 7,433 5,530 
    

Notes: Figures represent the probability of failing to select a Condorcet Winner given that a 
Condorcet Winner exists. Cases where no winner is selected by an elimination rule due to a tie 
are included as possible cases. Cases in which no winner is selected but a Condorcet Winner 
exists are treated as violations of the Condorcet Winner Criterion.  #CW represents the number 
of trials out of 10,000 in which there was a Condorcet Winner. 
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 Table 2 presents the results relative to the Condorcet Winner criterion. The most 

substantive result is that the LBC rule never fails the criterion. This is not a surprise, Fishburn 

(1977) provides a proof and credits Nanson (1907) with first noting that noting that an RCV 

elimination rule based on the Lowest Borda Count cannot eliminate a Condorcet winner. In fact, 

this was the motivation for Maskin and Sen (2023) suggesting Presidential election reform based 

on RCV with LBC.  

 This may seem surprising given that it is well known that the Borda Count election itself 

can violate the Condorcet Winner criterion. In that context, it is important to remember that here, 

the Borda Count is not supposed to choose a top candidate but to eliminate a bottom candidate. 

Example 3 below highlights this important difference. 

Example 3: Borda Count (𝐴𝐴 = 3,𝑁𝑁 = 99) 
Type 1 Voters (55) Type 2 Voters (44) 

A B 
B C 
C A 

 
 In this example, there are 55 Type 1 voters and 44 Type 2 voters, all with rankings of 

three candidates. Candidate A is the Condorcet Winner beating both B and C by 55 – 44 

margins. The Borda Counts for each are 2(55) + 0(44) = 110 for A, 1(55) + 2(44) = 143 for B, 

and 0(55) + 1(44) = 44 for C. Therefore, B wins the Borda Count election and the Condorcet 

winner criterion is violated. 

 Alternatively, in an RCV election with a Borda Count elimination rule, A wins 

immediately by a 55 – 44 majority and the Condorcet Winner criterion is not violated.  

This obviously is just an example and not a proof, but it does show that RCV with a Borda Count 

elimination rule is different than straight up Borda Count.  
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 The MLP rule also performs well relative to the Condorcet winner criterion when there 

are only three voters but fails more often when there are more voters. Whereas LFP has a much 

higher chance of a violation because of the greater chance of no winner being chosen (even when 

there is a Condorcet winner)as documented in Table 1. 

 The case where 𝑁𝑁 = 3 provides an interesting comparison. MLP and LBC do not result 

in violations. This may seem strange at first glance since both MLP and LBC had 533 trials 

without a winner. However, whenever a preference profile results in no winner, it also does not 

have a Condorcet winner and there is no violation. But this is not true of LFP which results in no 

winner outcomes even when there is a Condorcet winner. 

 Finally, for a fixed number of voters, the number of trials with a Condorcet winner is 

decreasing in the number of candidates with exception of no violations for MLP and LBC when 

𝑁𝑁 = 3 mentioned above. Similarly, for a fixed number of candidates, the number of Condorcet 

winners is decreasing in the number of voters.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 
 

 
Table 3: Violations of the Condorcet Loser Criterion 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.000 0.000 0.000 
    
Most Last Place 0.000 0.000 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CL 9,467 8,410 6,934 
    
𝑁𝑁 = 99     
    
Least First Place 0.004 0.001  0.000 
    
Most Last Place 0.003 0.001  0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CL 9,107 7,436 5,467 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.001  0.000 0.000 
    
Most Last Place 0.001  0.000* 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CL 9,163 7,443 5,492 
    

Notes: Figures represent the probability of selecting a Condorcet Loser given that a Condorcet 
Loser exists. Cases where no winner is selected by an elimination rule due to a tie are included as 
possible cases. #CL represents the number of trials a Condorcet Loser was chosen in trials.  
*It should be noted that although MLP with 𝑁𝑁 = 3,𝐴𝐴 = 5 shows 0.000 chances of a violation, it 
did experienced violations, and the apparent perfection is due to rounding. 
 
 Table 3 shows performance relative to the Condorcet Loser criterion. Here, all three 

elimination rules perform very well with no violations for all levels of 𝐴𝐴 when there are only 

three voters and for all levels of 𝑁𝑁 when there are nine candidates. LBC has the least number of 



21 
 

violations overall, never resulting in a Condorcet Loser violation for any combination of 𝐴𝐴 and 

N. Still, LBC’s advantage is minimal as LFP and MLP avoid electing the Condorcet loser in 

more than 99.5% of trials at worst. 

 Although small, when 𝑁𝑁 = 99, LFP and MLP see a slight uptick in violations compared 

to 𝑁𝑁 = 3 when 𝐴𝐴 = 3 and 𝐴𝐴 = 5. Interestingly, this uptick is reversed as 𝑁𝑁 increases to 9,999 

(𝐴𝐴 = 3 and 𝐴𝐴 = 5) and there is a very slight non-monotonicity. This may seem surprising given 

Nurmi (1987) and others’ proofs about RCV never electing a Condorcet Loser. However, their 

proofs are predicated on all ties being randomly broken, resulting in one elimination per round. 

When only one candidate is eliminated per round, the ultimate election winner must be the 

candidate who wins the final two-candidate head-to-head matchup. Since a Condorcet loser loses 

all head-to-head matchups, one can never when under the random tiebreaking rule.  

 Recall, however, that ties are not broken in my model. Rather, all tying candidates are 

eliminated simultaneously. This leads to the new possibility that if a Condorcet loser is amongst 

the final 𝑚𝑚 candidates and their 𝑚𝑚− 1 opponents all tie for elimination, the Condorcet loser will 

survive and be the sole remaining candidate and thus the election winner, without ever having to 

complete in a head-to-head matchup. The proof of the theorem below highlights how this can 

happen under LFP and MLP elimination rules but not under LBC. 

 

Theorem: A Condorcet Loser can win RCV with LFP and MLP elimination but not with LBC 

elimination when multiple candidates can be eliminated in a single round. 
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Proof:  

LFP can violate Condorcet Loser criterion:  

Proof by counterexample: 

Type 1 Voters 
(5 voters) 

Type 2 Voters 
(3 voters) 

Type 3 Voters 
(3 voters) 

C A B 
A B A 
B C C 

 

With this preference profile, candidate C loses head-to-head to A (6 – 5) and to B (6 – 5), 

making C a Condorcet loser. In the RCV election, there is no majority winner as A gets 3 first 

place votes, B gets 3 first place votes, and C gets 5 first place votes. In the first elimination stage, 

A and B tie with the least first place votes (3 each) and are both eliminated, leaving C as the sole 

remaining candidate who wins despite being a Condorcet loser, never having to beat another 

candidate in the majority round. It is worth noting that this is not possible when ties are broken 

because if only one of A or B were eliminated, the other would go on to defeat C in the majority 

stage of the next RCV round.  

MLP can violate Condorcet Loser criterion:  

Proof by counterexample: 

Voter Type 1 
(1 voter) 

Voter Type 2 
(4 voters) 

Voter Type 3 
(1 voter) 

Voter Type 4 
(3 voters) 

Voter Type 5 
(2 voters) 

C A A B B 
B C B C A 
A B C A C 

 

With the above preference profile, candidate C loses head-to-head to A (7 – 4) and to B 

(6 – 5), making C a Condorcet loser. In the RCV election, there is no majority winner in stage 

one as A gets 5 first place votes, B gets 4 first place votes, and C gets 1 first place vote. In the 

elimination stage, A and B tie with the most last place votes (4 each) and are both eliminated, 
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leaving C (with only 3 last place votes) as the sole remaining candidate who wins despite being a 

Condorcet loser. Once again, this is not possible when ties are broken because if only one of A or 

B were eliminated, the other would go on to defeat C in the majority stage of the next RCV 

round.  

LBC cannot violate the Condorcet Loser criterion:  

Proof: 

If a Condorcet Loser is to win an RCV election, it must be that all other remaining 

candidates are eliminated at the same time during an elimination round. Call this number of other 

candidates 𝑚𝑚, meaning that there are 𝑚𝑚 + 1 total candidates (the others plus the Condorcet 

loser). Note that 𝑚𝑚 >  1 because if 𝑚𝑚 =  1, the other remaining candidate would have won the 

majority round against the Condorcet Loser and there would not have been a subsequent 

elimination round. 

For all other 𝑚𝑚 candidates to be eliminated at once, two things must be true. (1) To be 

tied, all other 𝑚𝑚 candidates must have the same Borda count (call it 𝐾𝐾). (2) The Condorcet 

Loser’s Borda count must be higher than 𝐾𝐾. I will prove these two events are disjoint and 

therefore, a Condorcet loser cannot win under LBC elimination.  

Case 1: 𝑁𝑁 odd. 

 With 𝑚𝑚 + 1 candidates and 𝑁𝑁 voters, there are 𝑁𝑁𝑁𝑁(𝑚𝑚 + 1)/2 total Borda points 

available. To be a Condorcet loser, a candidate can at most have 𝑚𝑚𝑚𝑚/2 Borda points. This 

happens if they lose every head-to-head matchup by one vote. This means that among the 

𝑚𝑚(𝑚𝑚+1)𝑁𝑁
2

 total Borda points available, there must be at least 𝑚𝑚(𝑚𝑚+1)𝑁𝑁
2

− 𝑚𝑚𝑚𝑚
2

 points to be allocated 
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amongst the other 𝑚𝑚 candidates. Since the other 𝑚𝑚 candidates must tie, they each must have 𝐾𝐾 =

𝑚𝑚(𝑚𝑚+1)𝑁𝑁
2 −𝑚𝑚𝑚𝑚

𝑛𝑛
𝑚𝑚

= 𝑚𝑚𝑚𝑚
2

 Borda points.  

 Since 𝑚𝑚𝑚𝑚
2

= 𝑚𝑚𝑚𝑚
2

, even if the Condorcet loser obtains their maximum number of Borda 

points, that total cannot exceed the average of the remaining Borda points across the other 

candidates. Therefore, the Condorcet loser can never have a higher Borda count than that of the 

tied other candidates and the Condorcet loser can never win the LBC version of RCV when there 

are an odd number of voters. 

 

Case 2: 𝑁𝑁 even. 

 In the case where 𝑁𝑁 is even, the maximum number of Borda points a Condorcet winner 

can have is 𝑚𝑚�𝑁𝑁
2
− 1�. Once again, this happens when they lose all head-to-head matchups by 

one vote. This leaves 𝑚𝑚(𝑚𝑚+1)𝑁𝑁
2

− 𝑚𝑚�𝑁𝑁
2
− 1� Borda points to be allocated to the other 

𝑚𝑚 candidates. Since the other 𝑚𝑚 candidates must tie, they each must have 𝐾𝐾 =

𝑚𝑚(𝑚𝑚+1)𝑁𝑁
2 −𝑚𝑚�𝑁𝑁2−1�

𝑚𝑚
= 𝑚𝑚𝑚𝑚+2

2
 Borda points.  

 The maximum possible Borda points for a Condorcet loser, 𝑚𝑚�𝑁𝑁
2
− 1� can be written as 

𝑚𝑚�𝑁𝑁−2
2
� and since 𝑚𝑚𝑚𝑚+2

2
> 𝑚𝑚�𝑁𝑁−2

2
� it follows that even if the Condorcet loser obtains their 

maximum number of Borda points, that total cannot exceed the average of the remaining Borda 

points across the other candidates. Therefore, the other 𝑚𝑚 candidates cannot lose to the 

Condorcet loser when they are all tied. Therefore, a Condorcet loser can never win the LBC 

version of RCV when there are an even number of voters. 
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 Since a Condorcet loser can never win the LBC election with an even or odd number of 

voters, it can never win an LBC election. ∴ 

Table 4: Violations of the IEA Criterion 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.223 0.477 0.695 
    
Most Last Place 0.053 0.152 0.223 
    
Lowest Borda Count 0.053 0.144 0.249 
    
𝑁𝑁 = 99     
    
Least First Place 0.136 0.332 0.545 
    
Most Last Place 0.133 0.334 0.528 
    
Lowest Borda Count 0.089 0.213 0.327 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.116 0.307 0.511 
    
Most Last Place 0.115 0.310 0.517 
    
Lowest Borda Count 0.084 0.209 0.328 
    

Notes: Figures represent the probability that a different result occurs if a non-winning candidate 
is removed from the initial preference profile. Cases where no winner is selected by an 
elimination rule due to a tie are included as possible cases.  
 
 Table 4 shows that LBC generates the least number of IEA violations except for the case 

of 𝑁𝑁 = 3,𝐴𝐴 = 9 where it is only slightly worse than MLP. LFP performs particularly poorly 

when 𝐴𝐴 = 3 because of the excessive number of no winner outcomes but as 𝑁𝑁 increases to 99 

and 9,999, LFP and MLP violation probabilities become very similar. As expected, violation 

probabilities are increasing in both 𝐴𝐴 and 𝑁𝑁 for all rules. Interestingly, although LBC performs 

best relative to IEA, this is its worst performance of the four criteria. 
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Table 5: Violations of the Reversal Symmetry Criterion 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.053 0.238 0.485 
    
Most Last Place 0.053 0.003 0.002 
    
Lowest Borda Count 0.053 0.015 0.013 
    
𝑁𝑁 = 99     
    
Least First Place 0.032 0.021 0.010 
    
Most Last Place 0.029 0.017 0.005 
    
Lowest Borda Count 0.052 0.014 0.002 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.024 0.017 0.006 
    
Most Last Place 0.023 0.015 0.005 
    
Lowest Borda Count 0.053 0.015 0.002 
    

Notes: Figures represent the probability that the same result occurs before and after preference 
profiles are reversed. Cases where no winner is selected by an elimination rule due to a tie are 
included as possible cases.  
 
 All rules perform relatively well on the reversal symmetry criterion, and while LFP tends 

to have the most violations, the comparison of MLP and LBC is mixed. MLP is better than LBC 

when 𝐴𝐴 = 3, they are roughly the same when 𝐴𝐴 = 5, and LBC is better than MLP when 𝐴𝐴 = 9.  

The case of 𝑁𝑁 = 3 is different than under the other three criteria in cases when 𝑁𝑁 = 3. There, the 

LFP violation is increasing in 𝐴𝐴, the LBC rate is decreasing 𝐴𝐴, and the MLP rate is non-

monotonic.  

 The 𝐴𝐴 = 3,𝑁𝑁 = 3 case is interesting because the only instance where the three rules 

violate reversal symmetry is when each candidate has one of each ranking and there is a tie in all 



27 
 

three. In that case, reversing the preference order continues to result in no winner, thus causing 

the violation. 

Conclusions 

In general, which voting rule is “best” depends upon the properties valued by a community. 

Lately, many communities have expressed interest in RCV and begun advocating for its 

adoption. The results established in this paper suggest it is crucial that policymakers and 

advocates consider specific details of the election process such as the elimination method and tie-

breaking rules. For example, a major advocate of RCV is Fairvote.org which promotes RCV 

with a Least First Place elimination method and their website does not make any mention of how 

ties are broken. Once again, these details matter and should be part of any proposal or debate 

regarding RCV. 

 This paper provides substantive computational evidence that the Lowest Borda Count 

elimination is generally better than the Least First Place and Most Last Place rules in terms of 

frequency of violating the Condorcet winner, Condorcet loser, Independence of Eliminated 

Alternatives, and Reversal Symmetry criteria. Future work might focus on how random 

elimination of candidates could change these results. IEA results could also be extended to 

removals of all subsets of candidates rather than the simple single candidate removals examined 

here. Finally, the different elimination rules could be compared relative to other important 

criteria such as monotonicity. 

 In sum, Maskin’s recommendation for using RCV with Lowest Borda Count elimination 

in United State Presidential elections provided the motivation for this paper. The results in this 

paper support the suggested use of LBC if RCV is used because LBC is simply better than the 

status quo LFP in most instances. 
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Appendix 

This appendix presents violation findings under the condition that all no winner results are 

removed from the comparison.  

Table A1: Violations of the Condorcet Winner Criterion (conditional) 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.000 0.000 0.000 
    
Most Last Place 0.000 0.000 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW: LFP 7,771 5,230 3,049 
#CW: MLP 9,467 8,461 6,998 
#CW: LBC 9,467 8,461 6,998 
    
𝑁𝑁 = 99     
    
Least First Place 0.043 0.114 0.212 
    
Most Last Place 0.040 0.111 0.196 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW: LFP 9,029 7,355 5,431 
#CW: MLP 9,034 7,342 5,440 
#CW: LBC 9,107 7,428 5,489 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.035 0.102 0.186 
    
Most Last Place 0.035 0.100 0.199 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW: LFP 9,162 7,432 5,530 
#CW: MLP 9,163 7,433 5,529 
#CW: LBC 9,163 7,433 5,530 
    

Notes: Figures represent the probability of failing to select a Condorcet Winner given that a 
Condorcet Winner exists. Cases where no winner is selected by an elimination rule due to a tie 
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are not included as possible cases. #CW represents the number of trials where there was a 
Condorcet winner, and the elimination rule produced a winning candidate. 
 
 Table A1 shows that once trials with no winner are filtered out, all rules perform very 

well relative to the criterion when there are only three voters. This relates to the intuition 

discussed regarding Table 2 above where the large number of violations under the LFP rule was 

driven by the large number of ties under that rule. Once eliminated, LFP performs as perfectly as 

MLP and LBC. Still, this perfection of both the LFP and MLP rules ceases with 99 and 9,999 

voters while LBC continues its perfection, always electing the Condorcet winner. 

 An important characteristic about Table A1 is that since each rule possibly produced a 

different number of no winner results, filtering out no winner results leads to a different number 

of Condorcet winners remaining after the filtering. These differences are noted by the addition of 

rows #CW: LFP, #CW: MLP, and #CW: LBC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



33 
 

Table A2: Violations of the Condorcet Loser Criterion (conditional) 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.000 0.000 0.000 
    
Most Last Place 0.000 0.000 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CL: LFP 7,771 4,663 2,212 
#CL: MLP 9,467 8,234 6733 
#CL: LBC 9,467 7,794 6282 
    
𝑁𝑁 = 99     
    
Least First Place 0.004 0.001  0.000 
    
Most Last Place 0.003 0.001  0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW: LFP 9.029 7,340 5,383 
#CW: MLP 9,034 7,345 5,403 
#CW: LBC 9,107 7,403 5,421 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.001  0.000 0.000 
    
Most Last Place 0.001   0.000 0.000 
    
Lowest Borda Count 0.000 0.000 0.000 
    
#CW: LFP 9,162 7,443 5,491 
#CW: MLP 9,163 7,442 5,492 
#CW: LBC 9,163 7,433 5,492 
    

Notes: Figures represent the probability of selecting a Condorcet Loser given that a Condorcet 
Loser exists. Cases where no winner is selected by an elimination rule due to a tie are not 
included as possible cases. Since the different rules have a different number of trials removed for 
No Winner (see Table 1), each might have a different number of Condorcet losers, leading to the 
inclusion of the rows #CL: LFP, #CL: MLP, and #CL: LBC #CL 
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 As with the unconditional case, once no winner results are removed, LBC has the least 

number of violations, never electing a Condorcet Loser (see Theorem above). But this advantage 

is negligible as in the unconditional case since LFP and MLP elect non-Condorcet losers more 

than 99.5% of the time and usually more than even that. As with the unconditional case, there is 

a non-monotonicity in the violation percentage as 𝑁𝑁 is increased for the 𝐴𝐴 = 3 and 𝐴𝐴 = 5 trials 

although the changes were very small. Interestingly, with nine candidates, none of the rules 

caused a violation.  

Table A3: Violations of the Independence of Eliminated Alternatives Criterion 
(conditional) 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.000 0.000 0.000 
    
Most Last Place 0.000 0.137 0.198 
    
Lowest Borda Count 0.000 0.070 0.169 
    
𝑁𝑁 = 99     
    
Least First Place 0.127 0.323 0.538 
    
Most Last Place 0.125 0.326 0.522 
    
Lowest Borda Count 0.086 0.209 0.320 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.116 0.307 0.511 
    
Most Last Place 0.115 0.310 0.517 
    
Lowest Borda Count 0.084 0.209 0.328 
    

Notes: Figures represent the probability that eliminating a candidate results in a different winner 
than the winner under the full slate of candidates. Cases where no winner is selected by an 
elimination rule due to a tie are not included as possible cases.  
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 Once no winner trials are removed, none of the elimination rules have a violation when 

𝐴𝐴 = 𝑁𝑁 = 3. This is because all instances without a no winner result had a majority winner and 

with only two candidates left after an elimination, that winner continues to win, leaving no IEA 

violations. As 𝐴𝐴 increases with 𝑁𝑁 = 3, LFP performs the best of the three rules with LBC 

performing second best, and MLP last. This is because LFP continues to only produce violations 

when there are no winner results and with those trials removed, LFP remains perfect in the 

conditional case. Alternatively, MLP and LBC have other violation sources when 𝑁𝑁 > 3. 

 With 𝑁𝑁 = 99 and 𝑁𝑁 = 9,999, LFP’s advantage disappears, and its violation probabilities 

become virtually the same as MLP while LBC has fewer violation probabilities than both.  

Except for LFP’s lack of violations when 𝑁𝑁 = 3, violation probabilities tend to be increasing in 

the number of candidates. When 𝑁𝑁 increases from 3 to 99, all three rules see a significant jump 

in violation probability which levels off for 𝑁𝑁 = 99 and 𝑁𝑁 = 9,999 with even a few slight 

decreases with the larger number of voters. 
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Table A4: Violations of the Reversal Symmetry Criterion (conditional) 

Voting rule 𝐴𝐴 = 3  𝐴𝐴 = 5  𝐴𝐴 = 9  
𝑁𝑁 = 3     
    
Least First Place 0.000 0.000 0.000 
    
Most Last Place 0.000 0.003 0.000 
    
Lowest Borda Count 0.000 0.005 0.001 
    
𝑁𝑁 = 99     
    
Least First Place 0.032 0.021 0.010 
    
Most Last Place 0.029 0.017 0.005 
    
Lowest Borda Count 0.049 0.014 0.002 
    
𝑁𝑁 = 9,999     
    
Least First Place 0.024 0.017 0.006 
    
Most Last Place 0.023 0.015 0.002 
    
Lowest Borda Count 0.053 0.015 0.002  
    

Notes: Figures represent the probability that the same result occurs in a trial and when the 
preference profiles are reversed. Cases where no winner is selected by an elimination rule due to 
a tie are not included as possible cases. 
 
 All rules perform relatively well regarding reversal symmetry with the highest failure rate 

being 0.053 by LBC when 𝐴𝐴 = 3,𝑁𝑁 = 9,999. LFP performs better than MLP and LBC where 

𝑁𝑁 = 3 with both perform similarly. Interestingly, LBC performs the worst when 𝐴𝐴 = 3 but is 

weakly the best when 𝐴𝐴 = 5 and 𝐴𝐴 = 9 (LFP performs worst in those cases). 

 As in the unconditional case (Table 5), there is a non-monotonicity with MLP and LBC 

as 𝐴𝐴 increases when 𝑁𝑁 = 3. For the cases of 𝑁𝑁 = 99 and 𝑁𝑁 = 9,999, all probabilities are 

decreasing in 𝐴𝐴. There is a similar non-monotonicity with LFP and MLP as 𝑁𝑁 increases for all 

values of 𝐴𝐴 while the probability is increasing with LBC as 𝑁𝑁 increases for all values of 𝐴𝐴.  


