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Abstract 

Ranked choice voting (RCV) is one of the fastest-growing electoral reforms in the United States, 
yet few have considered whether RCV could be improved with a different elimination procedure.  
This paper examines RCV with three different elimination procedures: Fewest First Place votes, 
Most Last Place votes, and Least Borda Count.  We examine how often RCV with each of these 
procedures violates four criteria: the Condorcet winner criterion, reversal symmetry, 
independence of eliminated alternatives, and monotonicity using data from RCV elections in the 
United States as well as simulated data from the Impartial Culture condition – both with 
complete and partial rankings.  Our results show that eliminating candidates with the least Borda 
count, rather than the traditional fewest first place votes, can help RCV adhere to the Condorcet 
Winner criterion, the IEA criterion, and monotonicity.  Results from reversal symmetry are more 
mixed.  Discovering that another elimination procedure is at least as likely to adhere to three of 
four normative criteria may help improve RCV as a voting rule and boost its success as an 
electoral reform. 
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Introduction 

Ranked Choice Voting (RCV), also known as Instant Runoff Voting, is one of the most broadly 

endorsed electoral reforms in the United States today.  Republicans, like Mitt Romney, and 

Democrats, like Elizabeth Warren, have endorsed it, claiming it tempers political polarization 

and strengthens “the principle of majority rule while … including those in the minority.”1  RCV 

has become so popular that a member of the US House of Representatives introduced a bill in 

Congress which required RCV for all primary and general elections for both the House and 

Senate.2   

RCV is a preferential voting method that allows voters to rank candidates in order of their 

preference.  If a candidate receives more than half of the first ranked votes, that candidate wins.  

If no candidate receives a majority, a candidate is eliminated, and lower-ranked candidates are 

moved up to fill the missing ranks.  The process repeats until one candidate obtains a majority 

among the non-eliminated candidates. 

Traditionally, the candidate with the Fewest First Place votes (FFP) is eliminated.  

However, other elimination procedures could be used.  The candidate with the Most Last Place 

votes (MLP) could be eliminated, as suggested by Coombs (1964),3 or the candidate with the 

Least Borda Count (LBC) could be eliminated as advocated by Foley and Maskin (2022).4  Foley 

 
1  Wilburn (2023). Quote from Warren and Raskin (2020). 
 
2  Congress.gov. “Text - H.R.9578 - 118th Congress (2023-2024): Ranked Choice Voting Act.” 
September 12, 2024. https://www.congress.gov/bill/118th-congress/house-bill/9578/text, Accessed 
October 15, 2025. 
 
3 Unlike traditional RCV, RCV with MLP guarantees that if there are less than five voters a Condorcet 
winner will be selected in a single dimensional model with single-peaked preferences (Grofman and Feld 
2004). 
 
4  Foley (2023) calls this the “fewest total votes.” 
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(2023) recommends the latter because it uses all information in a ranked-choice ballot, not just 

the first-rank information.  Each elimination procedure represents a distinct implementation of 

RCV, yet the effects of those procedures on RCV remain largely unexplored. 

This study evaluates how three elimination procedures, FFP, MLP, and LBC, affect 

RCV’s compliance with four normative criteria: the Condorcet winner criterion, reversal 

symmetry, independence of eliminated alternatives, and monotonicity.  Rather than treating a 

voting rule that violates a criterion in a single ballot profile the same as a voting rule that violates 

a criterion in every possible ballot profile, as done in the axiomatic approach (e.g., Arrow 1951), 

we determine the frequency of violations among the profiles examined.  We use two types of 

data, ballots from RCV elections in the United States and simulated ballots generated from the 

Impartial Culture condition – both for complete and partial rankings.   

We find that the traditional method of eliminating candidates with the fewest first place 

votes is not the best way to comply with these democratic principles.  Specifically, eliminating 

the candidate with the least Borda count improves RCV adherence to the Condorcet Winner 

criterion, the IEA criterion, and the monotonicity criterion.  Results from the reversal symmetry 

criterion are more mixed.   

By demonstrating that the most commonly used elimination procedure violates three of 

the four normative criteria more frequently than one of the alternatives, we identify a clear path 

for improving RCV.  Modifying the elimination procedure makes RCV a more normatively 

appealing voting rule, thereby advancing it as a legitimate electoral reform. 
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Literature Review 

Traditional RCV, which eliminates the candidate with the fewest first place votes (FFP), can 

violate the Condorcet winner criterion, IEA, monotonicity, and reversal symmetry over an 

unrestricted domain.  In practice, however, RCV rarely violates the first three criteria. 

The Condorcet Winner Criterion requires a voting rule to select the candidate that beats 

every other candidate in pairwise contests if such a candidate exists (Condorcet 1785).  

Condorcet believed that if a candidate could defeat every other candidate in pairwise 

comparisons, that candidate should be declared the winner.  To see his reasoning, consider a 

sports competition such as boxing.  If a boxer defeats all contenders in their weight class, that 

boxer ought to be crowned champion of the weight class.  Similarly, if a candidate beats all other 

candidates, Condorcet reasoned that candidate ought to win.   

It is widely known that even though RCV will never select a Condorcet loser, that is a 

candidate that loses to every other candidate pairwise, it can fail to select a Condorcet winner 

(Nurmi and Palha 2021).  Miller (2017) shows that in three candidate elections, RCV fails to 

select the Condorcet winner if and only if the Condorcet winner has the fewest plurality votes.  

Such a candidate would be eliminated in the first round and not have an opportunity to go head-

to-head with another candidate in the second round.  Plassmann and Tideman (2014) suggest that 

the rate of violation should be small and increase as the number of voters increases.  Despite 

these theoretical failures, in real-world elections, RCV almost always selects the Condorcet 

winner under FFP (Graham-Squire and McCune 2023; McCune et al. 2025).  The two cases cited 

in the US include progressive Bob Kiss’s victory in the 2009 Burlington, Vermont mayoral 

election over the Condorcet winner Andy Montroll, and Mary Peltola’s victory over Condorcet 
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winner Nick Begich in the 2022 US House election in Alaska (Ornstein and Norman 2014; 

Graham-Squire and McCune 2023; McCune et al. 2025). 

Reversal symmetry requires that if candidate A is the unique winner of an election, then A 

must not be elected if every voter's preference ranking is completely inverted, i.e., their least 

preferred alternative becomes their most preferred, and so on (Saari 1995; Saari and Barney 

2003).  To understand this criterion, imagine what would happen if the NCAA coaches poll 

asked coaches to rank football teams from most preferred at the top to least preferred at the 

bottom, but the computer program used to access the rankings had a glitch and considered the 

rankings in reverse order.  Fans might be angered by the glitch, but they would be stunned if they 

discovered the voting rule ranked the same team first in both profiles.  Such a voting rule would 

violate reversal symmetry. 

RCV can violate reversal symmetry.  However, based on simulations using a single-

dimensional spatial voting model with various numbers of candidates, RCV violates reversal 

symmetry at most 70 out of one million trials -- roughly the same rate as Borda Count, which 

never violates reversal symmetry (Dougherty and Edward 2011).  This suggests that RCV with 

FFP is particularly good at reversal symmetry in a single dimensional context, even though to the 

best of our knowledge it has not been evaluated in real-word elections. 

Independence of Eliminated Alternatives (IEA), also called the spoiler effect, stipulates 

that a candidate who wins an election should not lose the election if one or more of the non-

winning candidates are removed.  This differs from Arrow’s independence of irrelevant 

alternatives.  The former requires independence across sets of available candidates for a fixed set 

of preferences.  The latter requires independence across “irrelevant” preferences for a fixed set of 

candidates (Nurmi and Palha 2021; Dougherty and Heckelman 2020). 
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Simulations based on a single dimensional voting model with only one candidate 

eliminated at a time suggest that RCV with FFP adheres to IEA in roughly 48-64% of elections, 

and it is less likely to adhere to IEA as the number of candidates increases (Dougherty and 

Edward 2011).  In real-world data, violations have been found in the 2009 Mayoral election in 

Burlington; the 2021 City Council, Ward 2 election in Minneapolis, Minnesota; and the 2022 

House election in Alaska (Graham-Squire and McCune 2023; McCune and Wilson 2023).5   

Monotonicity, sometimes called upward monotonicity, dictates that if a candidate is 

winning an election, and one or more voters rank that candidate higher on their ballot(s) while all 

other rankings remain the same, then that candidate should not lose the election.  Monotonicity 

requires that a candidate not be harmed by gaining more support.  If a voting rule violates 

monotonicity, a voter's sincere attempt to support the leading candidate by moving them up in 

their ballot can actually result in the candidate losing the election.   

RCV is susceptible to monotonicity failures because increasing the ranking of the 

winning candidate among a subset of voters can cause a different candidate to be eliminated in 

an early round, allowing a spoiler candidate to persist in later rounds.  Mathematical analysis 

shows that susceptibility to monotonicity failure is hardly a rare event.  With FFP the rate of 

violation increases as the number of candidates increases (Quas 2004) and it increases quite 

substantially as three-candidate elections become more competitive (Miller 2017).  Using a two-

dimensional spatial voting model, Ornstein and Norman (2014) show that in three candidate 

elections a substantial proportion of competitive RCV ballot profiles are vulnerable to 

monotonicity failure with FFP, including upwards of 50% in closely contested profiles.  In 

 
5 The additional violations found by McCune and Wilson (2023) come from bootstrapping actual 
elections. 
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practice, however, monotonicity failures have been rarely observed.  In a database of 182 RCV 

elections in the US, monotonicity violations occurred in only three elections: the 2009 

Burlington Mayoral; the 2021 Minneapolis Ward 2; and the 2022 Alaska House (Graham-Squire 

and McCune 2023). 

Our study differs from the literature in three important ways.  First, we employ a more 

elaborate algorithm for detecting monotonicity violations than previously used and find two 

more US elections that violate monotonicity under FFP.  Second, we examine the reversal 

symmetry criterion which has been under-studied.  Third, and most importantly, we compare 

variations within a family of voting rules, namely RCV with three different elimination 

procedures.  We do this for both US Elections, IC-complete, and IC-partial data.  This allows us 

to isolate the effect of the elimination mechanism itself and the degree to which differences are 

due to skewed distributions or non-ranking behavior. 

 

Definitions 

Let C be the number of balloted candidates, R be the number of possible ranks, and N be 

the number of voters.  In the United States, RCV elections require a strict ranking of candidates 

but do not require ballots to be complete.  For example, Minneapolis allows three ranks.  A ballot 

would be complete in Minneapolis only if there were less than four candidates and voter ranked 

all candidates.  If three candidates run but a Minneapolis voter ranks only two of the three 

candidates, their ballot would be partial.  If five candidates run, all ballots would be partial.   

We assume voters prefer the candidates they rank higher more than the candidates they 

rank lower, they prefer ranked candidates to candidates they leave unranked, and they are 
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indifferent among their unranked candidates.6  For LBC this means that the candidate with the 

highest ranking receives R points, the second highest ranking receives R-1 points, …, the 

candidate with the lowest ranking receives 1 point, and unranked candidates receive 0 points.   

If two or more candidates are tied for elimination in any round, we eliminate a single 

candidate randomly.  Random elimination of a single candidate appears to be the most common 

method for breaking ties in the United States.7  

  

Data 

We examine three types of election data: RCV elections from the United States, simulated 

elections from the impartial culture condition, and simulated elections from the impartial culture 

condition with partial ballots. 

 

 

 

 
6 Another possible assumption is that voters have no preferences between ranked and unranked 
candidates.  The problem with this assumption is that it is inconsistent with the treatment of RCV 
elections with two candidates.  In those cases, voters frequently rank only one candidate, and electioneers 
assume that candidate is preferred to the unranked candidate.  If they considered unranked candidates 
non-comparable, a very large proportion of the ballots would have to be dropped. 
   
7 Ties are broken by random elimination in Alaska; Portland, Oregon; Maine; the District of Columbia; 
San Francisco; Oakland, San Leandro, and Berkeley, California; Minneapolis, Minnesota; and Ft. Collins, 
Colorado; to name a few.  Two other methods for breaking ties include eliminating all tied candidates at 
once (as applied in Boulder, Colorado) and the backward tie-breaking method (as applied in 
Northhampton and Easthampton, Massachusetts; Tacoma Park, Maryland; and Santa Fe, New Mexico).  
Under the backward tie-breaking method, if two or more candidates are tied, the candidate with the fewest 
votes in the previous round is eliminated.  If the tie persists, the candidate with the fewest votes in the 
round before that is eliminated.  The process continues until the tie is broken. 
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U.  S.  Election Data   

Fair Vote provides ballot data on almost every single-winner RCV election in the United States 

from 2004 to 2025 (Otis 2025).  We examine all 362 of those elections that have at least three 

candidates.  They include local, state, and federal elections conducted in various jurisdictions in 

Alaska, California, Colorado, Massachusetts, Maine, Maryland, Minnesota, New Mexico, New 

York, Oregon, Utah, and Vermont.  The number of balloted candidates range from 138 elections 

with 3 candidates to the single Minneapolis Mayoral Election of 2013 with 35 candidates.8  

Among the elections, 39 have five balloted candidates and 8 have nine balloted candidates.  The 

average election contains roughly 44,000 valid ballots, 3.9 marked ranks, and 5.2 candidates.   

 Voters make three common mistakes when they rank candidates.  They overrank, 

overvote, and skip ranks.  For each, we apply the most common treatment in the United States.   

An overrank occurs when a voter ranks a single candidate multiple times.  For example, 

they select Anne as both their first choice and second choice.  In such cases, we accept the 

highest ranking, then ignore each lower rankings for the same candidate and move the remaining 

candidates up the voter’s ballot.9    

An overvote occurs when a voter casts more than one vote for the same rank.  For 

example, when they mark both Anne and Bob as their first preference.  In these cases, we treat 

the ballot as exhausted as soon as an overvote is encountered.  Ranks above the overvote are 

 
8  An election with C balloted candidates may also contain additional write-in candidates, which we treat 
as a single person, which does not affect the results. 
 
9  The second most frequent method for addressing overranks appears to be exhausting the ballot upon 
over ranking.  In other words, election officials would treat the ballot as “exhausted” or invalid from the 
point of an over rank onward. 
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included in the ballot profile, but overvoted candidates and candidates ranked beneath those 

overvoted are dropped from the voter’s ballot.10 

A skip occurs when a voter leaves a column blank, i.e., they skip one or more rankings.  

In such cases, we ignore the blank and elevate the voter’s remaining rankings into the missing 

columns.11  The only time that an unranked candidate becomes ranked are cases in which the 

lowest ranked position is blank and there is a single unranked candidate. 

After processing, RCV elections in the US have three noticeable characteristics.  First, 

ballot profiles are typically skewed toward one (or two) candidates.  For example, with three 

candidates, roughly 53% of the elections have a majority winner in the first round, with an 

average vote share of 59%.  With five candidates, roughly 39% of the elections have a first-

round majority winner with an average vote share of 61%.  With nine candidates, roughly 36% 

of the voters rank the same candidate first.   

Second, there are many partial ballots in actual RCV elections – that is rankings with at 

least one missing value.  These are produced whenever a voter ranks fewer candidates than 

allowed or the number of candidates in the election exceeds the number of ranks on the ballot 

(Kilgour et al.  2020).  After processing, all blanks trail the set of ranked candidates.  In elections 

with three candidates and three ranks, an average of 0.156 of the ballots had a single trailing 

 
10  Another approach to overvotes is to skip the overvotes and continue counting.  That means election 
officials would eliminate the overvoted candidates but keep the rest of the ballot intact (as done in 
Burlington, Vermont; Minneapolis, Minnesota; and Portland, Oregon).  Surprisingly, exhausting the 
ballot upon overvote is much more common.  
 
11  There are at least two other approaches to skipped ranks.  First, a ballot continues after a single skipped 
ranking, but the ballot becomes inactive after two or more consecutive skips (as done in Alaska and 
Maine).  Second, the ballot is treated as exhausted as soon as a skipped rank is encountered (as done in 
Salt Lake City, Utah and Boulder, Colorado). 
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blank, while 0.302 of the ballots had two trailing blanks.  In the elections with five candidates 

and five ranks there were 0.263, 0.102, 0.201, and 0.384 trailing blanks for one missing, two 

missing, three missing, and four missing, respectively.   

Third, candidates with the most votes are disproportionately the candidate with the most 

trailing blanks.  Put differently, if a voter ranks only one candidate, they often rank the plurality 

winner.  For example, in three candidate elections, a little less than a third of the ballots cast for 

the plurality winner contain only one ranked candidate.  In five candidate elections, roughly 41% 

of the ballots cast for the plurality winner contained only one ranked candidate.  In nine 

candidate elections the number was roughly 36%.  This observation helps explain our reversal 

symmetry results. 

 

IC-Complete Distribution   

To compare the performance of the three elimination procedures in more competitive elections, 

we also simulated 1,000 elections using the Impartial Culture distribution (IC) with N = 10,000, 

and C = {3, 5, 9}.  IC draws each voter’s ballot rankings assuming each permutation of the C!  

strict preference orders are equally likely.  For our simulated data, we set R = C. 

 

IC-Partial Distribution   

Finally, we simulate 1,000 elections with partial IC rankings, N = 10,000, and C = {3, 5, 9}.  

These ballots are exactly the same as the ballots generated under IC-complete, except we replace 

the last r ranks with blanks, where r is a proportion derived from RCV elections in the US.  For 

example, because the average number of trailing blanks in 3 candidate elections with 3 ranks 
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were 0.156 for a single trailing blank and 0.302 for two trailing blanks, we eliminated the last 

ranked candidate in the first 1,560 of the 10,000 rows of the IC distributed preferences and the 

last two ranked candidates for the next 3,020 rows.  The remaining rows maintained complete 

ballots.12  Data from US Elections differs from data generated by the IC distribution in two 

important ways: the IC data is less skewed, and it is complete.  We study IC-partial data because 

it varies from US election data only in terms of skew, not in terms of completeness. 

 

Computer Script 

To determine the frequency of violations under each elimination procedure, we wrote an R script 

which utilized functions in Rcpp to increase processing speed.  The script starts by opening the 

ballots for a single election, either actual or simulated.  It determines the winner of the election 

using each elimination procedure separately then determines whether selecting that winner leads 

to a violation of any of the four criteria separately.  We repeat the process for the 362 actual 

elections, or the 1,000 simulated elections, and report the frequency of violations in each 

respective category. 

 The script identifies violations of the Condorcet winner and reversal symmetry criteria in 

the usual fashion.13  Functions for identifying IEA and monotonicity violations are more 

complex. 

 
12  There were few elections with 9 candidates and 9 ranks, so the proportions applied to C = 9 had to be 
calculated more elaborately using elections with the same number of ranks for 𝐶 𝜖 [7, 10]. 
 
13  For reversal symmetry we invert the preferences of the ranked candidates and leave the unranked 
candidates unranked. 
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IEA  

To determine whether RCV with each elimination procedure violates IEA, each subset S of the 

𝐶 −  1 candidates who lost the race are identified.  Voting is then reconducted on the set 𝑆 ∪ 𝑊, 

where W is the winner of the election with C candidates.  If a candidate other than W wins in any 

of the subsequent elections, the elimination procedure is marked as violating IEA for that 

election.  An elimination procedure adheres to IEA in an election only if it selects W for any 

combination of losing candidates removed.   

 

Monotonicity  

Our approach for detecting monotonicity violations proceeds in two stages.  First, the script 

determines whether ties arise during the elimination process, and whether resolving those ties in 

different ways could yield different winners.  Because such outcomes make the winner depend 

on arbitrary tie-breaking, rather than on ballot preferences, we classify these cases as 

monotonicity violations but record them separately. 

Second, if no tie-induced violation is found, we test whether the winner of the initial 

election W could be forced to lose if W is moved up on some ballots, while other rankings remain 

fixed.14  The key to our approach is recognizing that any candidate capable of defeating W after 

such modifications must already defeat W head-to-head in the original profile.  Denote the set of 

 
14 At the core of the evaluation is the MoveW() function, which implements counterfactual 
movements of W in the ballots. MoveW() computes the smallest feasible movement of W up the 
fewest ballots and fewest possible ranks to eliminate the targeted candidate.  That movement 
varies by FFP, MLP, and LBC and often causes groups of ballots to split.   
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such candidates F.  To avoid examining all possible elimination orders, whose number increases 

factorially (𝑂(𝑛!)) as the number of candidates increases, we generate all subsets S ⊆ 𝐶, such 

that 𝑊 ∈  𝑆 and 𝑆 ∩ 𝐹 ≠ ∅.  Among these, we identify what we call minimal “G-subsets,” that is 

the subsets in which a candidate other than W emerges as the winner.  For each G-subset, we 

construct compatible elimination orders by concatenating all permutations of the complement set 

𝐶\𝑆 with the elements of S.  In other words, candidates outside S must be eliminated before the 

G-subset is reached, with natural elimination always tested before 𝑊 is moved.  This subset-

based search (𝑂(𝑛ଶ)) drastically reduces the computational burden of the procedure. 

After the set of viable elimination orders have been generated, each elimination order is 

evaluated round by round.  In each round, we attempt to move W up in the fewest possible 

ballots to assure the targeted candidate’s elimination.  The process continues through the 

elimination order until either the first element of the G-subset is reached, at which point the 

modified profile is checked for whether it produces a winner other than W.  If it does, the 

election is classified as violating monotonicity; otherwise, the search proceeds to the next 

elimination order.15 

 

 

 
15 Graham-Squire and Zayatz (2021) approach the problem differently.  Following an insight by Miller 
(2017) for elections with three and four candidates, their script runs RCV with FFP on the original ballot 
profile to determine W and the four candidates that reach the final rounds.  The script then targets a 
monotonicity violation by moving W up only after the field is reduced to four candidates (or three if C = 
3).  The success of their algorithm depends on an assumption that any ballot modification in an earlier 
round that leads to a violation must also contain a more minimal violation detectable among the final four 
candidates in the original ballots.  Our script does not require that assumption.  It attempts movements in 
every period that a targeted candidate cannot be eliminated naturally, and it can be applied to MLP and 
LBC, as well as to FFP.  Interestingly, we identify only two more monotonicity violations in US elections 
using FFP. 



14 
 

Results 

This section presents a separate table of results for each criterion.  The top section of each table 

shows results from US elections, with combined results for all C in the left-most column and 

results broken out for C = 3, 5, 9 in the remaining columns.  The middle section presents results 

for complete voter rankings from the IC-complete distribution for C = 3, 5, 9.  The bottom 

section presents results from the IC-partial distribution.  Recall that our IC-partial ballots are 

identical to our IC-complete ballots except the number of empty-trailing ranks are set in 

proportion to the number of empty-trailing ranks from the US data.    
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Condorcet Winner 

Table 1: Condorcet Winner Violations 

Voting rule 𝐶 ∈ [3, 35] 𝐶 = 3 𝐶 = 5 𝐶 = 9 
US Elections     
     
Fewest First Place 0.006 0.007 0.026 0.000 
     
Most Last Place 0.003 0.000 0.000 0.000 
     
Least Borda Count 0.000 0.000 0.000 0.000 
     
# CW 359    
IC Complete      
     
Fewest First Place  0.026 0.095 0.169 
     
Most Last Place  0.038 0.073 0.183 
     
Least Borda Count  0.000 0.000 0.000 
     
# CW  890 735 540 
IC Partial      
     
Fewest First Place  0.017 0.066 0.136 
     
Most Last Place  0.024 0.053 0.067 
     
Least Borda Count  0.008 0.036 0.031 
     
# CW  915 815 699 

Notes: The figures reported are the frequency of Condorcet winner violations given the existence of a 
Condorcet winner and the ballot type indicated in the section.  #CW indicates the number of Condorcet 
winners.  For the 362 US Elections, 𝑁 ∈ [112, 942,031].  For the 1,000 ICC complete and partial 
elections, N =10,000.   
 

The rate at which Ranked Choice Voting violates the Condorcet winner criterion with each of the 

three elimination procedures is presented in Table 1.   

Because the distribution of preferences RCV in US elections are skewed, all but three of 

the US elections have a Condorcet winner (2021 Minneapolis Ward 2; 2022 Oakland School 
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Board, District 4; and 2021 Portland, ME City Council).  This is indicated by #CW = 359 at the 

bottom of the top section.  Interestingly, RCV almost always selects the Condorcet winner 

regardless of the elimination procedure.  FFP only fails to select a Condorcet winner twice (2009 

Burlington Mayoral; and 2022 Alaska House) out of the 359 elections where a Condorcet winner 

exists, both of which correspond to what is found in the existing literature. MLP has one 

violation (2008 election for Assessor/Treasurer in Pierce County, Washington), and LBC has 

zero violations. No difference in violation rate is statistically significant.  Part of the reason that 

all three elimination procedures are so successful at finding Condorcet winners is that many 

RCV elections have a first-round majority winner in the US.   

In contrast, consider the results for IC-complete ballots in the middle section of the table.  

The proportion of Condorcet winners in the IC-complete simulations ranged from 0.540 for C = 

9 to 0.890 for C = 3.  In those cases, each combination of the strict linear orders is equally likely, 

the number of candidates equals the number of ranks on the ballot, and every ballot contains a 

complete ranking of the candidates.  With complete ballots, LBC never violates Condorcet 

winner criteria, while FFP and MLP violate the criterion at low rates.  The difference between 

the LBC violations and either FFP or MLP violations are statistically significant for each C 

considered.  Rates of violation increase as the number of candidates increases. 

 The bottom section of the table presents the IC-partial results.  The proportion of 

Condorcet winners in the IC-partial simulations ranged from 0.699 for C = 9 to 0.915 for C = 3.  

Among the partial ballots, the number of LBC violations is significantly less than FFP for each 

value of C examined.  For C = 3 and 9, LBC also has statistically fewer violation than MLP at 

the .05 level.  One might conclude that LBC performs at least as well as FFP in terms of the 

procedure’s ability to select Condorcet winners. 
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Reversal Symmetry 

 
Table 2: Reversal Symmetry Violations 

Voting rule 𝐶 ∈ [3, 35] 𝐶 = 3 𝐶 = 5 𝐶 = 9 
US Elections     
     
Fewest First Place 0.583 0.528 0.615 0.500 
     
Most Last Place 0.583 0.514 0.564 0.625 
     
Least Borda Count 0.610 0.565 0.590 0.500 
     
IC Complete      
     
Fewest First Place  0.031 0.015 0.001 
     
Most Last Place  0.026 0.014 0.000 
     
Least Borda Count  0.059 0.013 0.000 
     
IC Partial      
     
Fewest First Place  0.296 0.326 0.183 
     
Most Last Place  0.287 0.369 0.216 
     
Least Borda Count  0.288 0.364 0.206 
     

Notes: The figures reported are the frequency of reversal symmetry violations given the ballot type 
indicated in the section.  For the 362 US Elections, 𝑁 ∈ [112, 942,031].  For the 1,000 ICC complete 
and partial elections, N =10,000.  For IC-complete and C = 9, the observed number of violations are eight 
for FFP, four for MLP, and two for LBC. 

 

The rate at which each elimination procedure violates reversal symmetry is presented in Table 2. 

The three elimination procedures violate reversal symmetry quite often in the naturally 

occurring data because the preference distributions are skewed in favor of one candidate and 

voters who rank only one or two candidates often rank the plurality winner.  Hence, when a 

preference profile is reversed, the same candidate is frequently ranked first or second by these 
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voters again.  In this setting, the pairwise differences between FFP, MLP, and LBC are 

insignificant at traditional levels.  Based on actual RCV election data we would have no reason 

to favor one elimination procedure over the others in terms of reversal symmetry.   

Complete ballots drawn from the IC distribution produce substantially fewer reversal 

symmetry violations because preferences are more uniform and diagnostics show that these 

elections never produce a majority winner.  Hence, when the preference profile is flipped 

different candidates appear at the top of the preference profile and RCV often selects a different 

winner.  Interestingly, for C = 3, MLP outperforms LBC at the 0.001 level of significance, but it 

does not outperform FFP at traditional levels.  For C = 5, 9, the rates of violation are even 

smaller than for C = 3 and the pairwise differences remain insignificant. 

As shown on the bottom of the table, there are substantially more reversal symmetry 

violations from the IC-partial data than the IC-complete data.  The reason is clear.  Consider C = 

3.  With 30% of the second and third ranked candidates marked as missing, reversing the 

preference profile produces the exact same first ranked candidate for 30% of the ballots.  With 

16% of only the third ranked candidates missing, reversing the preference profile moves a first 

ranked candidate down only one rank.  Hence, the same candidate tends to win a reversed IC-

partial election, causing greater reversal symmetry violations than IC-complete.  The rate is 

lower than US elections because the IC-partial distribution is not also skewed.   

Again, in terms of the best elimination procedure the results are mixed.  MLP has the 

smallest violation rate for C = 3 and FFP has the smallest violation rate for C = 5, 9.  However, 

none of the pairwise differences are statistically significant at the .05 level, except the difference 
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between FFP and MLP for C = 5.16  One might conclude that the three elimination procedures 

perform fairly similarly in terms of reversal symmetry. 

 

Independence of Eliminated Alternatives 

 

Table 3: IEA Violations 

Voting rule 𝐶 ∈ [3, 35] 𝐶 = 3 𝐶 = 5 𝐶 = 9 
US Elections     
     
Fewest First Place 0.011 0.015 0.051 0.000 
     
Most Last Place 0.011 0.007 0.026 0.000 
     
Least Borda Count 0.008 0.007 0.026 0.000 
     
IC Complete      
     
Fewest First Place  0.121 0.374 0.678 
     
Most Last Place  0.135 0.364 0.686 
     
Least Borda Count  0.102 0.263 0.460 
     
IC Partial      
     
Fewest First Place  0.095 0.265 0.493 
     
Most Last Place  0.103 0.241 0.400 
     
Least Borda Count  0.085 0.223 0.347 
     

Notes: The figures reported are the frequency of IEA violations given the ballot type indicated in the 
section.  For the 362 US Elections, 𝑁 ∈ [112, 942,031].  For the 1,000 ICC complete and partial 
elections, N =10,000.   

 
 

 
16  For C = 9, the difference between FFP and MLP just misses the .05 level of significance with a two-
sided p-value = 0.065. 
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The top section of Table 3 shows that RCV rarely violates IEA in the US.  FFP violates IEA in 

four elections (2009 Burlington Mayoral; 2021 Minneapolis Ward 2; 2022 Alaska House; and 

2022 Oakland School Board District 4). The first three have been noted in the literature, but the 

last is new. MLP also violates IEA in four elections (2008 Pierce County; 2021 Portland City 

Council; 2021 Minneapolis Ward 2; and 2022 Oakland School Board), which differ from FFP. 

LBC violates IEA in three elections (2021 Minneapolis Ward 2; 2021 Portland City Council; and 

2022 Oakland School Board). 

The low number of violations makes sense for two reasons.  First, there are candidates 

with outright majorities in many of these elections that are difficult to displace when other 

candidates are eliminated.  Second, because ballots are partial, removing combinations of 

unranked candidates rarely displaces the winner.   

The IC-complete results produce substantially greater rates of violation because those 

ballots are not skewed in favor of a single candidate, and all candidates are ranked.  Hence, 

removing various combinations of other candidates is more likely to lead to a different winner in 

the IC-complete data than in the US data.  With this distribution, LBC is less likely to violate 

IEA than the other two elimination procedures for C = 3, 5, 9.  The pairwise difference is 

statistically significant in all cases except C = 3, for which the difference between LBC and FFP 

is insignificant at traditional levels. 

The violation rates for IC-partial are between the violation rates from the US and IC-

complete.  The partial data is less skewed than the US data, leading to more violations, and the 

partial data has more lower ranks than the IC-complete data, leading to fewer violations from the 

removal of unranked candidates.  For IC-partial, LBC continues to have a lower rate of violation 

than the other two procedures.  However, there is no statistically significant difference between it 
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and either of the other two elimination procedures for C = 3.  For C = 5, LBC outperforms FFP 

at the .05 level of significance.  For C = 9, LBC outperforms both FFP and MLP at the same 

level of significance.  Similar to our conclusion for Condorcet winners, one might conclude that 

LBC performs at least as well as the other two elimination procedures on the IEA criterion. 

 

Monotonicity 

Table 4: Monotonicity Violations 

Voting rule 𝐶 ∈ [3, 35] 𝐶 = 3 𝐶 = 5 𝐶 = 9 
US Elections     
     
Fewest First Place 0.014 0.014 0.051 0.000 
     
Most Last Place 0.011 0.007 0.026 0.000 
     
Least Borda Count 0.008 0.007 0.026 0.000 
     
IC Complete      
     
Fewest First Place  0.129 0.318 0.544 
     
Most Last Place  0.138 0.307 0.548 
     
Least Borda Count  0.107 0.248 0.443 
     
IC Partial      
     
Fewest First Place  0.099 0.236 0.380 
     
Most Last Place  0.103 0.215 0.338 
     
Least Borda Count  0.087 0.207 0.311 
     

Notes: The figures reported are the frequency of monotonicity violations given the ballot type indicated in 
the section.  For the 362 US Elections, 𝑁 ∈ [112, 942,031].  For the 1,000 ICC complete and partial 
elections, N =10,000.   
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The rate at which RCV violates monotonicity with each of the three elimination procedures is 

presented in Table 4.  In the actual voting data, FFP, MLP, and LBC all violate monotonicity in 

the 2021 Portland City Council election due to the random elimination of a candidate.  FFP 

violates monotonicity in an additional four elections, two of which have three candidates (2022 

Alaska House; and 2022 Oakland School Board) and two of which have five candidates (2009 

Burlington Mayoral; and 2021 Minneapolis Ward 2).  The Portland and Oakland results are new.  

In addition to the random elimination election, MLP violates monotonicity in the Minneapolis 

and Portland elections, as well as the 2008 Pierce County.  The latter election had six candidates.  

FFP violates monotonicity in the random elimination election, Oakland, and Minneapolis.  

Differences in performance are not statistically significant at traditional levels. 

No movement of W would create a monotonicity violation in the remaining cases, largely 

because 99% of the elections did not have a candidate that beat the winner W in head-to-head 

contest -- a necessary condition for a monotonicity violation without random elimination.  

Ironically, all of the elections in which a candidate could beat W head-to-head under an 

elimination procedure produced a monotonicity violation, suggesting that lacking pairwise 

challengers explains the result. 

With the IC-complete data, the three elimination procedures violate monotonicity at a 

much greater rate.  For each C examined, LBC violates monotonicity less often than FFP and 

MLP.  For C = 3, 9, the difference between FFP and LBC is statistically significant at the .001 

level.17  Even though the rate of monotonicity violations is much larger than in real-world 

elections, the rate continues to be muted because few candidates beat W head-to-head.   

 
17 For C = 3, the difference between FFP and LBC has a p-value = 0.127. 
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As was the case for IEA, the violation rates for the IC-partial distribution are between the 

violation rates from the actual elections and IC-complete.  Part of the reason it is lower than IC-

complete is that the number of elections with at least one candidate who can beat W head-to-head 

is smaller in the partial data than in the complete data.   

In addition, for FFP -- a procedure that focuses entirely on first-place votes -- a candidate 

targeted for elimination may be unranked in many partial ballots.  In such ballots, it is impossible 

for a candidate to receive fewer first ranked votes by moving W into a higher position, because a 

candidate must have some first ranks to get fewer first ranks by the movement of W.  

Furthermore, moving W up in a ballot with only a couple ranked candidates can easily give W a 

majority and an early win, rather than eliminate a targeted candidate.   

For MLP there are fewer violations from IC-partial than from IC-complete because with 

many unranked candidates, MLP largely focuses on eliminating unranked candidates.  Raising W 

cannot manufacture a targeted elimination in those cases if moving W from unranked to ranked 

does not differentiate among the unranked candidates.  Of course, the second explanation for 

FFP applies to MLP as well.  Hence, it is more difficult for movements in W to flip the winning 

candidate.   

Similarly, when several rivals are unranked together under LBC, moving W from 

unranked to ranked does not uniquely damage any one of them.  Instead, it can eliminate other 

candidates that do not lead to a different winner at the end of the order.  Of course there is still 

room for inversions, but there is less room than expected with the complete ballots. 

With the partial ballots, LBC has the lowest rate of violation regardless of the number of 

candidates.  However, the only statistically significant difference between FFP and LBC is for C 
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= 9, which is significant at the .01 level.  We conclude that LBC performs at least as well as FFP 

on the monotonicity criterion. 

   

Conclusion 

The principal contribution of this research is to demonstrate that the normative performance of 

Ranked Choice Voting (RCV) is not only defined by ranked voting itself but also by the choice 

of the elimination procedure.  By systematically comparing the traditional Fewest First Place 

procedure against Most Last Place and Least Borda Count, our study provides a novel, data-

driven framework for evaluating RCV variants.  We have shown that adopting a procedure 

sensitive to the entire ballot, such as Least Borda Count, reduces violations of key criteria, 

including the Condorcet Winner Criterion, Independence of Eliminated Alternatives, and 

Monotonicity.  This challenges the common assumption that RCV is a singular electoral system 

with fixed normative properties.   

The most profound differences in adhering to a criterion were found in the simulated 

Impartial Culture (IC) data, not in the current set of real-world RCV election data.  The disparity 

is revealing.  RCV elections, particularly in their nascent stages in the US, are frequently so 

skewed by decades of plurality voting and high levels of party polarization that RCV often yields 

the same result as plurality rule.  If RCV advocates want the system to actually make a 

meaningful difference, they must prepare for conditions in which procedural rules matter -- 

namely, competitive multi-candidate elections that are not skewed.  The IC-complete and IC-

partial distributions, which model such highly competitive environments, serve as a critical 



25 
 

proxy for the future state of RCV, when differences in procedural rules matter, including the 

voting rule itself. 

Ultimately, this paper shifts the debate from simply asking, “Should we use RCV?” to 

meticulously defining, “How should RCV be implemented?” The evidence suggests that RCV’s 

failures, which critics often cite as definitive flaws, may not be inherent to preferential voting.  

Instead, they may be artifacts of the specific, commonly adopted elimination procedure.  By 

providing a clear, empirically supported recommendation -- eliminating the candidate with the 

least Borda count -- we offer jurisdictions a practical path to more criterion-compliant elections.  

True commitment to fairer elections requires not just adopting a ranked system but designing its 

administrative rules with enough precision to realize a voting rule’s full potential.  
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