
Model Descriptions
In this section, I introduce five different models. They are:

Model 1: SalePrice ~ GrLivArea 

Model 1 is a uni-variate model of SalePrice on GrLivArea. GrLivArea represents the square footage of the
house that is above ground. I included this as a measure of the size of the house based on the idea that
larger houses, on average, sell for more than smaller houses.

Model 2: SalePrice ~ BedroomAbvGr + FullBath 

Model 2 is a bi-variate model of Sales Price on BedroomAbvGr and FullBath. BedroomAbvGr represents the
number of bedrooms above ground (not including those in basements) and FullBath represents the number
of full bathrooms above ground. I included these two variables because I often hear houses advertised
based on the number of bedrooms and bathrooms they have. The idea is that houses with more
bedrooms/bathrooms sell for more, on average, than houses with fewer bedrooms/bathrooms.

Model 3: SalePrice ~ GrLivArea + BedroomAbvGr + FullBath 

Model 3 combines GrLivArea, BedroomAbvGr, and FullBath into a single model as I would speculate that
these are probably the three most important characteristics of a house that determine its selling price.

Model 4: SalePrice ~ GrLivArea + BedroomAbvGr + FullBath + as.factor(Neighborhood) 
                                + GrLivArea * as.factor(Neighborhood)

Model 4 adds the Neighborhood variable and an interaction of Neighborhoods with GrLivArea to Model 3.
The intuition is that the neighborhood in which a house is located will affect its value. The neighborhood
information was operationalized using the as.factor function to create 24 dichotomous variables
representing the 25 different neighborhoods with the Bloomington Heights (Blmngtn) neighborhood as the
baseline (thereby avoiding the dummy variable trap).

Model 5: SalePrice ~ (GrLivArea + BedroomAbvGr + FullBath + as.factor(Neighborhood))^3 

Model 5 is the complicated model requested in the assignment. It takes the variables GrLivArea,
BedroomAbvGr, Fullbath, and Neighborhood used in model 4 and cubes them, thereby creating many
interactions and higher-order terms. Although inclusion of these variables makes sense in terms of
determining the value of a house, I had no definitive reason for cubing them other than to create a very
complicated model with 176 coefficients to be estimated.
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Model Selection based on Training Data
I began my analysis by estimating the five models using linear regressions. I followed this by estimating my
complicated model (5) using Lasso and Ridge regressions. Table 2 lists the various model selection criteria
results for these seven regressions. All regressions used the training data and 10 folds for cross-validation.

Table 1: Model Assessment Using Training Data

Model R-Squared Adj R-Squared aic bic cv*

LM 1 0.5402211 0.5397604 28720.58 28730.39 54562.54

LM 2 0.3149282 0.3135539 29121.35 29136.08 66581.56

LM 3 0.6157400 0.6145826 28545.15 28564.78 50086.40

LM 4 0.8230613 0.8135425 27913.63 28286.62 37025.29

LM 5 0.8711099 0.8472584 27796.79 28660.56 85792.34

Lasso 5 NA NA NA NA 38863.43

Ridge 5 NA NA NA NA 39028.53

*Note: Values in this column are the square roots of cvs (see Comment 1 below). 

Table 1 shows that R-squared, Adjusted R-squared, and aic all rank the five linear regression models in the
following order (from best to worst):

LM 5, LM 4, LM 3, LM 1, LM 2

LM 5 performs the best and LM 2 performs the worst. It is not surprising that LM 1, LM 2, and LM 3 are
ranked lowest because they are relatively simple models. I was a bit surprised that LM 5 ranked highest in
terms of adjusted R-squared since it uses so many variables but that seems not to have hurt LM 5 very
much because  1000 making the penalty term weight, , relatively close to 1 despite the  = 176

regressors. In terms of adjusted R-squared, it was encouraging that LM 4 and LM 5 generated adjusted R-
square values great than 0.80, indicating that their regressors explained more than 80% of the variance in
selling prices. I thought this was very good for models I built based on very limited knowledge of real estate
markets.

Things change with bic where LM 4 overtakes LM 5 as the highest ranked model with the three simple
linear models ranking in the same order as before. I speculate that LM 4 performs so well because it
includes the most relevant information and interaction terms without over complicating the analysis.
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Comment 1: Before discussing the cross-validation results, I note that the project instructions asked us to
calculate cv . I calculated cv in this way but the values are very large, so I present their
square roots in the Table 1. Because the square root function is monotonic increasing, the ranking based on
cv is preserved with this transformation. These cv rankings change dramatically from the previous rankings,
yielding the following (from best to worst):

LM 4, Lasso 5, Ridge 5 LM 3, LM 1, LM 2 LM 5

Interestingly, LM 4 is at the top of the cv rankings with Lasso 5 and Ridge 5 coming in second and third.
Still, Ridge 5 and Lasso 5 outperform all the other linear regression models. Of particular interest is that LM
5 was the best model based on R-squared, adjusted R-squared, and aic, but is now ranked last based on cv.
This is undoubtedly because of overfitting. At this point, LM 4, Lasso 5, and Ridge 5 are the front runners,
the next section will try to hone in on one of these models as the model of choice by considering out-of-
sample cross-validation.

Model Selection based on Testing Data
This section compares the seven regressions using out-of-sample data from the house_price_test.csv file.
Table 3 presents the results, ordered from best to worst in terms of cv.

Table 3: Out of Sample cv Comparison

Model cv

Ridge 5 37628.23

LM 4 37660.24

Lasso 5 40093.09

LM 3 55138.63

LM 1 59977.54

LM 2 64109.34

LM 5 78144.33

Ridge 5 is ranked highest, overtaking LM 4 which is ranked a very close second. LM 5 is still ranked last,
once again likely attributable to the complexity of the model and overfitting. Lasso 5 is now ranked third in
terms of cross-validation. The high ranking of Lasso 5 makes sense since it is designed to detect and use
the more meaningful interaction and non-linear terms and ignore those that are less meaningful.
Regressions LM 3, LM 1, and LM 2 are ranked in the same order as before and are ranked low by cv which
is, once again, not surprising because they are relatively simple models. Still, it is worth pointing out that all
three linear regressions outperform the bloated regression LM 5.

In the end, Ridge 5 appears to be the best model based on out-of-sample cross-validation and would be
my choice to predict house selling prices in Ames, IA. I conclude by investigating just how good Ridge 5 is
in terms of out-of-sample prediction quality.
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Conclusions
Above, I identified Ridge 5 as the best of my models. I conclude this project with more detailed examination
of how well Ridge 5 predicts selling prices by examining how “off the mark” its predictions were using the
testing data.

Here, I plotted the Ridge 5 residuals in the histogram above for a more granular view than the aggregated
cv measure. The histogram in Figure 1 is divided into bins of $10,000. We see that most residuals are
between -$50,000 and $50,000. The mean and median absolute prediction error (using the test data) are
$25,818.99 and $17,827.64 respectively. Because of a few fairly large residuals, the median provides a better
measure of central tendency than does the mean. Given a median selling price of $163,995, $17,827.64
seems reasonably good. Still, I would be hesitant to use any of these models to actually predict house
selling prices in Ames, IA if money was on the line. Still, my results suggest that someone who knows more
about real estate and the areas in Ames could likely help build a useful model using the most important
factors that influence selling price.


